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LETTER TO THE EDITOR

Spherical model for anisotropic ferromagnetic films

D A Garanin†
I Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, D-20355 Hamburg,
Germany

Received 26 October 1995, in final form 4 March 1996

Abstract. The corrections to the Curie temperature Tc of a ferromagnetic film consisting of
N layers are calculated for N � 1 for the model of D-component classical spin vectors in the
limit D → ∞, which is exactly soluble and close to the spherical model. The present approach
accounts, however, for the magnetic anisotropy playing the crucial role in the crossover from three
to two dimensions in magnetic films. In the spatially inhomogeneous case with free boundary
conditions the D = ∞ model is non-equivalent to the standard spherical one and always leads to
the diminishing of Tc(N) relative to the bulk.

The application of the spherical model [1] to spatially-inhomogeneous magnetic systems, such
as ferromagnetic films with free boundary conditions by Barber and Fisher [2], has revealed the
unphysical behaviour of the solution being the consequence of the global spin constraint. The
dependence Tc(N) for a d-dimensional hypercubic lattice infinite in d ′ = (d − 1) dimensions
and having N layers in the dth dimension has been found to be for d � 4 a non-monotonic
function with a maximum, i.e. Tc(N) for N � 1 was larger than in the bulk. Other singular
features of the spherical model were found by Abraham and Robert [3] by considering the
problem of phase separation (i.e. the domain wall formation).

Besides the numerous publications using the spherical model for inhomogeneous systems
in its original form (see, e.g., [4, 5]), there is a work by Costache et al [6] in which the global
spin constraint was replaced for a ferromagnetic film by separate constraints in each layer.
Although this model is less convenient for analytical calculations, it was shown that for d � 4
the value of Tc(N) monotonically increases to its bulk value Tc(∞), as it should from physical
grounds. Earlier Knops [7] had proved that in a general inhomogeneous situation the spherical
model with a spin constraint on each lattice site is equivalent to the D-component classical
vector model by Stanley [8] in the limit D → ∞. The latter is not only more physically
appealing than the original spherical model, but it also allows one to take into account the spin
anisotropy [9] and to produce the 1/D expansions [10–12]. A convenient tool to handle the
D-vector model is the classical spin diagram technique [12, 13].

The possibility of considering anisotropic systems makes the analytically soluble D =
∞ model, which can also be called for simplicity the spherical model, rather attractive
for applications. In [14] it was used to investigate the role of fluctuations in the phase
transition from Bloch to linear domain walls in biaxial ferromagnets. Anisotropy also
plays a crucial role for ferromagnetic films in the actual case d = 3. For N �= ∞
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the system is infinite in only d ′ = 2 dimensions, and cannot sustain a long-range order in
the case of a continuous spin symmetry. Correspondingly, Barber and Fisher [2] have found
diverging corrections to Tc for N � 1 for the standard spherical model. On the other hand,
for a purely two-dimensional system (N = 1) Tc tends to zero only logarithmically slowly
with vanishing anisotropy. One can expect that in the quasi three-dimensional case (N � 1)
the characteristic anisotropy required to support the long-range order should be extremely
small. The calculation of the Tc-corrections for three-dimensional ferromagnetic films, which
strongly depend on the anisotropy, is the main purpose of this work. The Hamiltonian of the
anisotropic classical D-vector model can be written in the form

H = − 1
2

∑
ij

Jij

(
mzimzj + η

D∑
α=2

mαimαj

)
(1)

where mi is the normalized D-component vector, |mi | = 1 and η < 1 is the dimensionless
anisotropy factor. In the mean field approximation (MFA) the Curie temperature of this model
is T MFA

c = J0/D, where J0 is the zero Fourier component of the exchange interaction. It is
convenient to introduce the dimensionless temperature variable θ ≡ T/T MFA

c and the reduced
correlation function (CF) of transverse (α � 2) spin components: sij ≡ D〈mαimαj 〉, which
are well behaved in the limit D → ∞. Using the diagram technique for classical spin systems
[12–14], one arrives in the limit D → ∞ at the closed system of equations for the average
magnetization mi ≡ 〈mzi〉 and the CF sij . These are the magnetization equations

mi = Gi

∑
j

λijmj (2)

the Dyson equation for the correlation function

sii ′ = θGiδii ′ + ηGi

∑
j

λij sji ′ (3)

and the kinematic relation playing the role of the spin constraint on a lattice site i

sii + m2
i = 1. (4)

Here λij ≡ Jij /J0 and Gi is the one-site spin average D〈mαimαi〉θ renormalized by
fluctuations, which should be eliminated from the equations.

In the Ising case (η = 0) the influence of the fluctuations of the transverse spin components
disappear. Since, additionally, the longitudinal fluctuations dying out as 1/D are not present
in the equations above, the situation is in this case exactly described by the MFA. Equation (3)
has for η = 0 the trivial solution sii = θGi ; then from constraint (4) one gets Gi = (1−m2

i )/θ ,
and the elimination of Gi in (2) leads to a closed equation for the magnetization.

In the homogeneous case mi = m and Gi = G are constants, and equation (3) can be
easily solved with the help of the Fourier transformation, which results in

sii = v0

∫
ddk

(2π)d
sk = θGP(ηG) P (X) ≡ v0

∫
ddk

(2π)d

1

1 − Xλk

. (5)

Here v0 is the unit cell volume and λk ≡ Jk/J0. For the d-dimensional hypercubic lattices
v0 = ad

0 , a0 is the lattice spacing,

λk = 1

d

d∑
i=1

cos(a0ki) (6)
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and the lattice integral P(X) has the following properties:

P(X) ∼=




1 + X2/(2d) X 
 1

(1/π) ln[8/(1 − X)] 1 − X 
 1; d = 2

W3 − c3(1 − X)1/2 1 − X 
 1; d = 3

W4 − c4(1 − X) ln[c′
4/(1 − X)] 1 − X 
 1; d = 4

(7)

where W3 = 1.516 39 and W4 = 1.239 47 are the Watson integrals, c3 = (2/π)(3/2)3/2 and
c4 = (2/π)2. For d � 5 the leading terms of the expansion of P(X) about X = 1 are non-
singular. Since in the homogeneous case the sum on the right-hand side of (2) equals m, it is
satisfied only if m = 0 (above θc) or G = 1 (below θc). Then from equation (4) one obtains
the temperature-dependent magnetization:

m = (1 − θ/θc)
1/2 θ � θc ≡ 1/P (η). (8)

In the isotropic case (η = 1) for d � 3 the value of the temperature in the bulk θc reduces to the
well known result θc = 1/W [1]. For d = 2 one obtains θc(η) ∼= π/ ln[8/(1 − η)] vanishing
for η → 1. In the Ising case η = 0, the MFA result θc = 1 is reproduced.

To solve the equations of the spherical model for a d-dimensional hypercubic
ferromagnetic film it is convenient to use the Fourier representation in d ′ = d − 1
translationally-invariant dimensions and the site representation in the dth dimension. The
Dyson equation (3) for the Fourier-transformed CF σnn0(k) takes on the form of a system of
the second-order finite-difference equations

2bnσn − σn+1 − σn−1 = (2dθ/η)δnn0 n = 1, 2, ..., N (9)

where the mute index n0 of σ was dropped. For the free and periodic boundary conditions
(fbc and pbc) in (9) we set

σ0 = σN+1 = 0 (fbc)

σ0 = σN σN+1 = σ1 (pbc, N � 3). (10)

The coefficient bn in (9) reads

bn = 1 + d[(ηGn)
−1 − 1] + d ′(1 − λ′

k) (11)

where λ′
k is given by (6) with d ⇒ d ′. The magnetization equation (2) takes on the form

2b̄nmn − mn+1 − mn−1 = 0 (12)

with b̄n ≡ bn(η = 1, k = 0) and the boundary conditions similar to (10). The constraint
equations (4) can now be written as

snn + m2
n = 1 snn = ad ′

0

∫
dd ′

k

(2π)d
′ σnn(k) n = 1, 2, ..., N. (13)

The solution of equation (9) is governed by the effective k-dependent correlation length, which
in the long wavelength region, a0k 
 1, is given by

rc(k) = a0/
√

2d[(ηG)−1 − 1] + (a0k)2 (14)

and which should be compared with the film thickness L = Na0. In the region of parameters
rc(k) 
 L one can expect the d-dimensional quasi-bulk behaviour perturbed due to the
finite L. In the opposite limit a behaviour corresponding to the reduced dimensionality
d ′ = d − 1 is to be expected. For d � 3 in situations where the finite-size corrections to
θc are small, the main contribution to the integral (13) comes from the region a0k ∼ 1. For
such wave vectors the correlation length (14) is of the order of the lattice spacing a0, and
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σnn(k) are the functions of Gn in several neighbouring layers. Then from the constraint
equations (13) it follows (at least in the paramagnetic state, mn = 0) that the inhomogeneity
of Gn in the fbc case is confined to the boundary regions n, N − n � nc ∼ 1. Due to this
inhomogeneity an analytical solution of the problem is possible only in limiting cases. In
the subsequent we shall restrict ourselves to the calculation of the Curie temperature θc of
ferromagnetic films with N � 1.

In the Ising limit η = 0 we have G = 1/θ above θc, and θc can be found from the condition
that the determinant of the linear system of equations (12) turns to zero. This leads to the MFA
result [15]

θc = 1 − 1

d

(
1 − cos

π

N + 1

)
. (15)

For the model with pbc, G is also independent of n due to the symmetry of the problem, and
for θ � θc, where m �= 0, one finds G = 1 from (2) or (12). The homogeneous solution of the
finite-difference equation (9) with bn = b has the form σn = c1µ

n + c2µ
−n, and the result for

the one-layer correlator σnn reads

σnn(k) = dθ

η
√

b2 − 1

1 + µ−N

1 − µ−N
µ = b +

√
b2 − 1. (16)

In the region 1 − η 
 1 and a0k 
 1 this expression has the limiting forms

σnn(k) ∼=




2dθ

ηN

1

2d(1 − η) + (a0k)2
L/rc(k) = N

√
2d(1 − η) + (a0k)2 
 1

dθ

η

1√
2d(1 − η) + (a0k)2

L/rc(k) � 1
(17)

demonstrating the crossover from d- to d ′-dimensional behaviour mentioned above. The
second of these limiting expressions corresponds to the bulk and can also be obtained by the
integration of the bulk CF sk (5) over the dth component of the wave vector. For N � 1 and
d = 3 the integral in (13) with σnn(k) (16) can be calculated analytically, and the result for θc

reads (pbc)

θ−1
c

∼= W3 +
3

πN
ln

1

1 − exp[−N
√

6(1 − η)]
. (18)

In the limit of extremely small anisotropies 1 − η the transition temperature θc becomes
logarithmically small,

θc
∼=

(
2πN

3

) /
ln

1

6N2(1 − η)

 1 (19)

but this limit is very difficult to reach for N � 1. The minimal value of 1−η required to support
θc ∼ 1 diminishes exponentially fast with the increase of N , 1 − η∗ ∼ N−2 exp(−2πN/3).
For d = 4 the results have the form (pbc)

θ−1
c

∼=




W4 +
2

3N2
1 
 N2 
 1/(1 − η)

W4 +
4[2(1 − η)]1/4

(πN)3/2
exp [−2N

√
2(1 − η)] N2(1 − η) � 1.

(20)

The first of these limiting expressions coinsides with that of Barber and Fisher [2].
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Now we proceed to the investigation of the more complicated case of a ferromagnetic film
with free boundary conditions. Here the solution of the Dyson equation (9) with n = n0 can
be represented by the recurrence formula

σnn = 2dθ

η

1

2bn − αn − α′
n

αn+1 = 1

2bn − αn

α′
n−1 = 1

2bn − α′
n

(21)

with the initial conditions

α1 = α′
N = 0 α2 = 1/(2b1) α′

N−1 = 1/(2bN). (22)

Now all quantities Gn entering bn (11) can be determined numerically as functions of θ from
the N constraint equations (13). Finally, θc can be found from the condition DN = 0, where
DN is the determinant of the linear system (12). The problem can be solved analytically in two
limiting cases depending on the value of N2(1 − η) (see (17)). In the limit N2(1 − η) � 1 the
system shows a d-dimensional (bulk) behaviour in the whole range of k, and in the main part
of a sample all σnn(k) are equal to each other and determined by the value of G far from the
boundaries. Indeed, in this region the recurrence relations in (21) converge in the depth of the
sample to α = α′ = b − √

b2 − 1, which leads to a bulk expression for σnn(k) analogous to
the second one in (17). The value of G in the depth of the film is in our limit insensitive to its
behaviour in the boundary regions n, N − n � nc ∼ 1, and can be found from the condition
DN = 0 using Gn = G = constant. To see that, one can simply cut the boundary regions
and require DN−nc = 0, which introduces corrections of the order 1/N 
 1. The calculation
analogous to that in the MFA case yields G ∼= 1 + (π/N)2/(2d). After integration over k

in (13) one arrives at the obvious expression snn = θGP(ηG) (see (5)), and the value of θc

determined from the condition snn = 1 reads (fbc, N2(1 − η) � 1)

θc
∼= 1

P(η)

[
1 − 1

2d

( π

N

)2
I (η)

]
I (η) = 1 +

ηP ′(η)

P (η)
. (23)

For d = 3 the limiting forms of I (η) obtained from (7) are given by

I (η) ∼=




1 + η2/d η 
 1

(3/2)3/2

πW3

1√
1 − η

1 − η 
 1.
(24)

One can see that (23) generalizes the MFA result (15), and for 1 − η 
 1 corrections to θc due
to the finite-size effects are much greater than in the MFA.

For d � 5 the derivative P ′(η) is finite for η → 1 (see (7)) and the results obtained above
can be applied for all values of η. The reason for this is that the region of small wave vectors,
k � kN ≡ a−1

0 /N , where for N2(1 − η) � 1 the quasi-bulk expression for the CF σnn(k)

becomes invalid (see (17)), is suppressed by the phase-volume factor in the integral (13). The
marginal case is d = 4, where for 1 − η � (a0kN)2 ∼ 1/N2 with logarithmic accuracy it is
sufficient to calculate the integral over the Brillouin zone down to kN . As a result one gets
(fbc)

θ−1
c

∼=




W4 +
1

N2
ln N + O

(
1

N2

)
1 
 N2 � 1/(1 − η)

W4 +
1

2N2
ln

c′
4

1 − η
N2(1 − η) � 1

(25)

(cf (20)). An asymptotic dependence of the type ln(N)/N2 in the isotropic limit with a
coefficient close to unity was obtained numerically for the spherical model with the layer
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constraint in [6]. In contrast, for the standard spherical model [1] with fbc θ−1
c

∼= W4 + a/N

with a < 0 [2].
For a three-dimensional ferromagnetic film in the limit N2(1 − η) 
 1 the leading

correction to the k-integral (13) and hence to θc comes from the long wavelength region
k � kN = a−1

0 /N , where σnn(k) behaves two-dimensionally. The form of σnn(k) in this
region can be determined from the general formula (21). Beyond the narrow boundary regions
the quantities b̄n ≡ bn(η = 1, k = 0), etc, satisfy b̄n

∼= ᾱn
∼= ᾱ′

n
∼= 1, and the values of αn and

α′
n can be found from the recurrence relations (21) with the help of the expansion with respect

to small 1−η and (a0k)2. As a result one gets the same expression (17) in the same wave vector
range k � kN . This region yields the contribution of the order (1/N) ln[1/(N2(1 − η))] into
snn (13). The contribution of the region k � kN into the correction to snn can be estimated in
the following way. For 1 − η 
 1 the finite-size correction described by (23) and (24) comes
from the region of small wave vectors a0k ∼ √

1 − η. In our case, however, a0kN � √
1 − η,

and the corresponding contribution is reduced to the value of the order 1/N . With logarithmic
accuracy the latter can be neglected in comparison to that of the two-dimensional region
k � kN . The final result for θc of the three-dimensional model with free boundary conditions
can be written as (fbc, N2(1 − η) 
 1)

θ−1
c

∼= W3 +
3

2πN
ln

1

N2(1 − η)
+ O

(
1

N

)
. (26)

The similarity of this result with (18) is not surprising since in the relevant region k � kN ,
where rc(k) � L, all N layers are strongly correlated with each other and the type of boundary
conditions plays no role in the leading approximation.

The author thanks Hartwig Schmidt for valuable discussions. The financial support of Deutsche
Forschungsgemeinschaft under contract Schm 398/5-1 is greatfully acknowledged.

References

[1] Berlin T N and Kac M 1952 Phys. Rev. 86 821
[2] Barber M N and Fisher M E 1973 Ann. Phys., Lpz. 77 1
[3] Abraham D B and Robert M A 1980 J. Phys. A: Math. Gen. 13 2229
[4] Allen S and Pathria R K 1993 J. Phys. A: Math. Gen. 26 6797
[5] Patrick A E 1994 J. Stat. Phys. 75 253
[6] Costache G, Mazilu D and Mihalache D 1976 J. Phys. C: Solid State Phys. 9 L501
[7] Knops H J F 1973 J. Math. Phys. 14 1918
[8] Stanley H E 1968 Phys. Rev. 176 718
[9] Okamoto H 1970 Phys. Lett. 32A 315

[10] Abe R 1972 Progr. Theor. Phys. 48 1414; 1973 Progr. Theor. Phys. 49 113
[11] Abe R and Hikami S 1973 Progr. Theor. Phys. 49 442; 1977 Progr. Theor. Phys. 57 1197
[12] Garanin D A 1994 J. Stat. Phys. 74 275
[13] Garanin D A and Lutovinov V S 1984 Solid State Commun. 50 219
[14] Garanin D A 1996 J. Phys. A: Math. Gen. submitted
[15] Wolfram T, Dewames R E, Hall W F and Palmberg P W 1971 Surf. Sci. 28 45


